Deposit subscribe Prediction using Data Mining Techniques based Real Marketing Dataset

نویسنده

  • Safia Abbas
چکیده

Recently, economic depression, which scoured all over the world, affects business organizations and banking sectors. Such economic pose causes a severe attrition for banks and customer retention becomes impossible. Accordingly, marketing managers are in need to increase marketing campaigns, whereas organizations evade both expenses and business expansion. In order to solve such riddle, data mining techniques is used as an uttermost factor in data analysis, data summarizations, hidden pattern discovery, and data interpretation. In this paper, rough set theory and decision tree mining techniques have been implemented, using a real marketing data obtained from Portuguese marketing campaign related to bank deposit subscription [Moro et al. , 2011]. The paper aims to improve the efficiency of the marketing campaigns and helping the decision makers by reducing the number of features, that describes the dataset and spotting on the most significant ones, and predict the deposit customer retention criteria based on potential predictive rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing

Many companies like credit card, insurance, bank, retail industry require direct marketing. Data mining can help those institutes to set marketing goal. Data mining techniques have good prospects in their target audiences and improve the likelihood of response. In this work we have investigated two data mining techniques: the Naïve Bayes and the C4.5 decision tree algorithms. The goal of this w...

متن کامل

Using Data Mining for Bank Direct Marketing: an Application of the Crisp-dm Methodology

The increasingly vast number of marketing campaigns over time has reduced its effect on the general public. Furthermore, economical pressures and competition has led marketing managers to invest on directed campaigns with a strict and rigorous selection of contacts. Such direct campaigns can be enhanced through the use of Business Intelligence (BI) and Data Mining (DM) techniques. This paper de...

متن کامل

Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit

In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...

متن کامل

Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran

Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, ...

متن کامل

Alert correlation and prediction using data mining and HMM

Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1503.04344  شماره 

صفحات  -

تاریخ انتشار 2015